Unit 1 CodeBot Python Code By Mission

Mission 2 – Introducing CodeBot			
Import from botcore only leds functions	from botcore import leds		
Turn on one user LED	leds.user_num(0, True) – parameters are (LED number 0-7, True=on or False=off)		
Line sensor LED	leds.ls_num(0, True) – parameters are (LED number 0-4, True=on or False=off)		
Mission 3 – Time and Motion (Objectives 1-6)			
CodeSpace Debugger	Here a DEBUG then use the STEP IN button to <i>step</i> through your code.		
Import a delay	from time import sleep		
Use sleep()	<pre>sleep(1.0)</pre>		
Define a variable	delay = 1.0 (define variables at the top of the code, just under import statements)		
Use a variable with sleep()	<pre>sleep(delay)</pre>		
Turn off an LED	<pre>leds.user_num(2, False)</pre>		
Turn on three types of LEDs	leds.user_num(0, True)User LEDs (middle of the bot)leds.ls_num(0, True)Line sensor LEDs (across the front)leds.prox_num(0, True)Proximity sensor LEDs (one on each side)		
Use binary designation for turning on LEDs	<pre>leds.user(0b10101010)</pre>		
Mission 3 – Time and Motion (Objectives 7-9)			
Import entire library	<pre>from botcore import *</pre>		
Turn on motors	motors.enable(True) – must be done before motors will turn and wheels move		

Power a motor	motors.run(LEFT, 50) – will turn left wheel forward at 50% power	
	motors.run(RIGHT, -50) – will turn right wheel backward at 50%	power
Turn off motors	<pre>motors.enable(False)</pre>	
Mission 3 – Time and	Motion (Objectives 10-11)	
Returns Boolean value button was pressed	buttons.was_pressed(0) pressed)	or False (not
Use button press in branching	<pre>if buttons.was_pressed(0): elif buttons.was_pressed(1):</pre>	
Mission 4 – Animatronics (Objectives 1-5)		
Infinite loop	while True:	
Updating a variable	n_led = n_led + 1	
Use debugger to view variables	Variables Locals Globals choice: 0 codex console: <canvas 255<="" 3ff7c8="" at="" object="" td="" transparent:=""><td>Open the console panel while debugging</td></canvas>	Open the console panel while debugging
Reset a variable to stay within a range	<pre>n_led = n_led + 1 if n_led == 8: n_led = 0</pre>	
Break out of a loop	break	
Increment	<pre>n_guests = n_guests + 1 count = count + 1</pre>	
Turn on LED using a variable	<pre>leds.ls_num(n_guests, True)</pre>	
Mission 4 – Animatronics (Objectives 6-12)		
Play a tone on the speaker	spkr.pitch(440) sleep(0.1) the (argument) is the pitch frequency	

Turn off the speaker	<pre>spkr.off()</pre>
Debounce a button press	<pre>buttons.was_pressed(0)</pre>
While loop	while count < 10: (will iterate, or repeat, 10 times if count starts at 0)
Import random library	from random import randrange
Get a random number within a range	f = randrange(100, 1000)
Define a function	<pre>def flashLEDs(): leds.user(0b1111111) sleep(0.5) leds.user(0b0000000) sleep(0.5)</pre> # Function to play a note def note(freq, duration): spkr.pitch(freq) sleep(duration) spkr.off() sleep(0.05)
Call a function	<pre>flashLEDs() note(F4, 0.4)</pre>
Mission 5 - Fence Pat	rol
Read a line sensor	<pre>ls.read(num) # Sensor 'num' can be 0, 1, 2, 3, or 4</pre>
	<pre>val = ls.read(n) (returns a value between 0 and 4095)</pre>
Display the value of a variable in the console	<pre>print(val) print("Line sensor value = ", val)</pre>
Assign a Boolean result of a comparison to a variable Use the Boolean variable in code	threshold = 2500 is_detected = val < threshold leds.ls_num(0, is_detected)
Detection	Dark line on light surface — use val > threshold Light line on dark surface — use val < threshold
Use a comparison with a while loop and use the control variable as an argument in a function call	<pre>n = 0 while n < 5: detect_line(n) n = n + 1</pre>

Wait loop (safe driving)	<pre>while True: if buttons.was_pressed(0): break</pre>
Return statement	<pre>return is_detected return got_line</pre>
Call to a function that has a return	<pre>hit = scan_lines() if detect_line(count):</pre>
Use a variable to turn on LEDs	leds.user(line_count) line_count will be from 0 to 255
Wrap-around the line_count variable for binary numbers	<pre>line_count = line_count + 1 if line_count == 256: line_count = 0</pre>
Mission 6 - Line Follow	wer
Create a list	detected = [False, False, False, False]
Update a specific value in a list	<pre>detected[count] = val > thresh</pre>
Use a list with LEDs	<pre>vals = check_lines(threshold) leds.ls([False, True, True, False]) leds.ls(vals)</pre>
Botcore line sensors function (similar to check_lines) but faster	<pre>vals = ls.check(thresh, is_reflective) leds.ls(vals) It has a second parameter is_reflective that controls whether "detected" means the sensor is > thresh or < thresh. It returns a tuple rather than a is.check() takes 2 parameters. </pre>
Using or (logical operator)	elif vals[1] or vals[2] or vals[3]: if any of the conditions are true, the statement will evaluate to true
Comparing with a tuple	elif vals == (0,1,1,0,0):
Code needed to change a global variable inside a function	<pre>global count global thresh, is_reflective</pre>
Built-in math operations	<pre>abs(x) round(x, ndigits)</pre>

Mission 7 - Hot Pursuit	
Read the proximity sensors	<pre>prox.detect(). returns a tuple (left, right) with values True or False vals = prox.detect() left_detected = vals[0] right_detected = vals[1] Index values: 0 = left 1 = right</pre>
Proximity LEDs	<pre># Check proximity sensors p = prox.detect() # Show (left, right) on the PROX LEDs leds.prox(p)</pre>
Use parameters	P = prox.detect(power, threshold) Power is the "'bot flashlight" with settings from 1 to 8 (high power) Threshold is the sensitivity level, with settings from 1 to 100 (how much light is needed to detect)
Another built-in function that finds the ideal thresh for a given environment	<pre>prox.range() prox.range(num_samples, power, range_low, range_high) All parameters are optional</pre>
Toggle the motors on and off – can be used with a button press to turn on/off the motors	<pre># Toggle a variable go_motors = False go_motors = not go_motors # (not False) == True go_motors = not go_motors # (not True) == False</pre>